eagle-i Montana State UniversityMontana State University
See it in Search
This page is a preview of the following resource. Continue onto eagle-i search using the button on the right to see the full record.

Activation and nuclear translocation of ERK1/2 by the formyl peptide receptor is regulated by G protein and is not dependent on beta-arrestin translocation or receptor endocytosis.

eagle-i ID


Resource Type

  1. Journal article


  1. Resource Description
    G protein-coupled receptors (GPCRs) transmit diverse cellular signals in response to a large number of stimuli such as chemoattractants, lipids, neurotransmitters, odorants and light. The classical signaling pathway is through heterotrimeric G proteins, but GPCRs can also transmit signals through mechanisms that are not dependent on G proteins. In mammalian cells, the key component for this type of signaling is the family of scaffolding molecules called beta-arrestins. They can function as scaffolds for activation of mitogen-activated protein kinases, including extracellular signal-regulated kinases 1 and 2 (ERK1/2). In this study we examined the role of G protein and beta-arrestin in formyl peptide receptor (FPR)-mediated activation of chemotaxis, receptor endocytosis and ERK1/2 activation using wild type and mutant receptors. Our findings suggest that, unlike certain other GPCRs that can activate ERK1/2 without the involvement of G protein, FPR requires signaling through a G protein-mediated pathway. Previous observations have shown that ERK1/2, activated through G protein, translocates to the nucleus where it stimulates transcription factors. In contrast, the scaffolding protein beta-arrestin retains the activated ERK1/2 in the cytoplasm to allow phosphorylation of cytoplasmic targets. Our experimental data show that both wild-type FPR and a mutant FPR, defective in beta-arrestin binding, induce nuclear translocation of activated ERK1/2 with similar ligand concentration dependence as seen for activation of cytosolic ERK1/2. We propose that FPR-mediated activation of ERK1/2 takes place primarily through G protein and is physiologically important to ensure transcriptional activation of myeloid immunomodulators, such as cytokines.
  2. Website(s)
  3. PubMed ID
Provenance Metadata About This Resource Record
  1. workflow state
  2. contributor
    qking (Quinton King)
  3. created
  4. creator
    qking (Quinton King)
  5. modified
Copyright © 2016 by the President and Fellows of Harvard College
The eagle-i Consortium is supported by NIH Grant #5U24RR029825-02 / Copyright 2016